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STABILITY AND NONLINEAR WAVY REGIMES

IN DOWNWARD FILM FLOWS ON A CORRUGATED SURFACE

UDC 532.51Yu. Ya. Trifonov

The linear and nonlinear stability of downward viscous film flows on a corrugated surface to free-
surface perturbations is analyzed theoretically. The study is performed with the use of an integral
approach in ranges of parameters where the calculated results and the corresponding solutions of
Navier–Stokes equations (downward wavy flow on a smooth wall and waveless flow along a corrugated
surface) are in good agreement. It is demonstrated that, for moderate Reynolds numbers, there is
a range of corrugation parameters (amplitude and period) where all linear perturbations of the free
surface decay. For high Reynolds numbers, the waveless downward flow is unstable. Various nonlinear
wavy regimes induced by varying the corrugation amplitude are determined.
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1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Theoretical investigations of film flows were started in [1], where an exact solution of Navier–Stokes equations
was obtained for a free viscous thin-film flow down a smooth vertical wall:

U0(y) =
3νRe
H0

( y

H0
− y2

2H2
0

)
, H0 =

(3ν2 Re
g

)1/3

.

Here U0(y) is the velocity profile in the film in the direction of the gravity force g, ν is the kinematic viscosity, and
H0 is the thickness of the liquid layer for a given mass-flux density q0 = ν Re (Re is the Reynolds number).

Subsequent theoretical and experimental studies showed that the Nusselt solution is almost never encountered
in practice: normally, there are waves on the film surface. A great number of studies involved linear and nonlinear
analyses of wave formation in a downward film flow on a smooth surface [2–7]. The problem of nonlinear waves on a
film falling down a smooth plate has much in common with the problem of a steady viscous flow over a corrugated
surface [8–15]. In both cases, the equations are essentially nonlinear, the shape of the free surface is unknown
beforehand, surface-tension forces play an important role, and there is a spatial period involved in the problem. In
spite of numerous applications of this problem to distillation processes and advanced heat exchangers [16], there are
few experimental [8, 17] and theoretical [9–15] studies of the film flow on a corrugated surface. For instance, the
film flow down a sine-shaped surface with a small corrugation amplitude, as compared with the Nusselt thickness of
the film, was examined with the perturbation technique by Wang [9]. Kang and Chen [10] extended this approach
to the case of a two-layer film flow along a corrugated surface with a small corrugation amplitude. Pozrikidis [14]
considered a creep flow down a curved inclined surface, using the boundary-element method and disregarding inertial
forces. The asymptotic approach was used by Shetty and Cerro [12] to examine a liquid flow down a corrugated
surface with a corrugation amplitude much greater than the Nusselt film thickness H0. Treating corrugation in
the linear approximation, Bontozoglou and Papapolymerou [13] examined resonant effects in the range of finite
Reynolds numbers. The numerical solution of Navier–Stokes equations allowed the present author [14] to study
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the film flow in the range of finite Reynolds numbers for corrugation amplitudes commensurable with the Nusselt
thickness. In [15], the present author considered a film flow down complex-shaped three-dimensional surfaces with
rough corrugation (with an amplitude much greater than the Nusselt thickness) and fine texture (with an amplitude
commensurable with H0). All theoretical works mentioned above dealt with a waveless film flow down a corrugated
surface (in essence, an analog of the Nusselt solution for a film flow down a smooth wall). The present work is
aimed at studying stability of a film flow down a corrugated surface to free-surface perturbations and calculating
wavy flow regimes down such surfaces.

2. GOVERNING EQUATIONS

2.1. Waveless Solutions. The waveless film flow down a one-dimensional corrugated surface is described
by a system of Navier–Stokes equations with appropriate boundary conditions, which was described in detail in [14,
15]. The solutions are presented in the form

u(x, η) =
1
2
U1(x) +

M∑
m=2

Um(x)Tm−1(η1), η1 = 2η − 1,

Um(x) = U0
m +

N/2−1∑
n=−N/2+1

n�=0

Un
m exp

2πinx
L

, (U−n
m )∗ = Un

m, m = 1, . . . ,M,

(2.1)

where u(x, η) is the velocity-vector component aligned with the gravity force, x is the coordinate along the gravity-
force direction, η = (y− f(x))/H(x), y is the coordinate in the direction perpendicular to the gravity force, L is the
corrugation period, f(x) is the corrugation shape function, H(x) = h(x) − f(x) is the local film thickness, h(x) is
the shape function of the free surface, and Tm(η1) are the Chebyshev polynomials; the asterisk denotes complex
conjugation.

The problem reduces to a system of nonlinear equations for determining the harmonics Un
m and is solved

numerically. The velocity field in the y direction, the pressure in the film, and the shape of the free surface are
uniquely reconstructed from the harmonics Un

m.
In examining the wave dynamics of the film flow down a smooth surface, an integral approach (set of

Shkadov’s equations [2]), which implies long-wave perturbations, is frequently used. This approach was extended
in [14] to a film flow down a corrugated surface with a corrugation period much greater than the film thickness
(ε = H0/L� 1). The basic idea of the integral approach consist in using a self-similar profile of streamwise velocity

u(x, y) =
3ν Re
H(x)

(y − f(x)
H(x)

− (y − f(x))2

2H2

)
. (2.2)

After integration across the film and with allowance for Eq. (2.2), we obtain the following system of equations for
the dynamics of the film flow on a corrugated surface [14, 15]:

∂q

∂t
+

6
5
∂

∂x

q2

H
=

3
εRe

(
H − q

H2

)
+ ε2WeH

(∂3H

∂x3
+

1
ε1

d3f

dx3

)
,

∂H

∂t
+
∂q

∂x
= 0.

(2.3)

Here q(x, t) is the instantaneous flow rate in the film normalized to q0; the film thickness is normalized to H0; the
length scale in the x direction is the corrugation period; the time scale is H0L/q0; We = (3Fi)1/3/Re5/3 is the Weber
number, Fi = (σ/ρ)3/(gν4) is the film number, ρ is the liquid density, σ is the surface tension, and ε1 = H0/A (A is
the corrugation amplitude). Note that the presence of the capillary term in Eq. (2.3) is attributed to high values
of the film number Fi in the Weber criterion for most liquids being used.

The waveless flow down a corrugated surface is described by steady solutions of system (2.3): H = Hb(x),
q = 1. To find these solutions numerically, we used the Newton method and the Fourier expansion:
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H(x) =
N/2−1∑

n=−N/2+1

Hn exp (2πinx), (H−n)∗ = Hn.

2.2. Stability of Steady Solutions. Substituting q = 1 + q′ and H = Hb(x) + H ′(x, t) into system
(2.3) and linearizing the resultant equations in the neighborhood of the original equations, we obtain a system of
equations with periodically changing coefficients:

∂q′

∂t
+

12
5

∂

∂x

q′

Hb
− 6

5
∂

∂x

H ′

H2
b

=
3
εRe

(
H ′ − q′

H2
b

+
2H ′

H3
b

)
+ ε2WeH ′ d

3h0

dx3
+ ε2WeHb

d3H ′

dx3
,

∂H ′

∂t
+
∂q′

∂x
= 0, h0 = Hb(x) +

1
ε1
f(x).

(2.4)

According to Floquet’s theorem, the solutions of Eqs. (2.4) bounded in terms of the x coordinate are presented
as

H ′ = ψ(x) exp (−γt+ 2πiQx) + ψ(x) exp (−γ̄t− 2πiQx),

q′ = ϕ(x) exp (−γt+ 2πiQx) + ϕ(x) exp (−γ̄t− 2πiQx), (2.5)

ψ(x) = ψ(x+ 1), ϕ(x) = ϕ(x+ 1).

The bar denotes complex conjugation; Q is a real parameter varying from zero to unity. Substituting Eqs. (2.5)
into Eqs. (2.4), we obtain the following problem with eigenvalues:

2πiQϕ+
dϕ

dx
= γψ,

(
C0(x) + C1(x)

d

dx
+ C2(x)

d2

dx2
+ C3(x)

d3

dx3

)
ψ +

(
D0(x) +D1(x)

d

dx

)
ϕ = γϕ,

C0(x) = G3(x) + 2πiQG4(x) − (2πiQ)3G5(x), C1(x) = G4(x) − 3(2πiQ)2G5(x),

C2(x) = −3(2πiQ)G5(x), C3(x) = −G5(x), D0(x) = G1(x) + (2πiQ)G2(x),
(2.6)

D1(x) = G2(x), G1(x) =
12
5

d

dx

1
Hb

+
3

εReH2
b

, G2(x) =
12
5

1
Hb

, G4(x) = −6
5

1
H2

b

,

G3(x) = −6
5
d

dx

1
H2

b

− 3
εRe

(
1 +

2
H3

b

)
− ε2We

d3h0

dx3
, G5(x) = ε2WeHb.

Here the coefficients and eigenfunctions are periodic over the x coordinate:

ϕ(x) =
N/2−1∑

n=−N/2+1

ϕn exp (2πinx), ψ(x) =
N/2−1∑

n=−N/2+1

ψn exp (2πinx),

C(x) =
N/2−1∑

n=−N/2+1

Cn exp (2πinx).
(2.7)

The number of harmonics N in Eqs. (2.7) corresponds to the number of harmonics in the expansion of the basic
solution. Substituting Eqs. (2.7) into Eqs. (2.6), we obtain a problem of determining the eigenvalues for a complex
matrix of the general form [of size 2(N − 1) × 2(N − 1)], which is solved numerically. To study stability of the
solution Hb(x), we have to analyze 2(N − 1) eigenvalues for each value of the parameter Q in the range [0, 1]. The
solution is stable if the real parts of all 2(N − 1) eigenvalues are greater than zero or equal to zero for all Q ∈ [0, 1].
In this case, all perturbations of the free surface decay (or do not grow) with time.

Perturbations (2.5) with the parameter Q = 0 are worth mentioning. Such perturbations have the same
period as the original solution. Instability to this class of perturbations means that the waveless regime of the flow
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down a corrugated surface is impossible. Regimes unstable to perturbations with finite values of Q can be observed
in some regions until unstable perturbations are developed.

For a zero value of the corrugation amplitude (A = 0), problem (2.6) reduces to the known problem of
stability of the Nusselt solution for a film flow down a smooth wall. In this case, the parameter L has no physical
meaning (only a scale), and all perturbations with the wave length L/Q greater than a certain value (λ∗) increase
with time:

L

Q
> λ∗ = 2πH0

√
We
3

= 2π
(3ν2

g

)1/3(Fi
9

)1/6 1√
Re
, Q ∈ [0, 1]. (2.8)

In the present work, the calculations were performed for two liquids: nitrogen at the saturation line [Fi = 1.231·1011,
(3ν2/g)1/3 = 0.0216 m, and λ∗ = 6.65, 2.71, and 2.35 mm for Re = 1, 6, and 8, respectively] and water–glycerin
mixture [3] [Fi = 7.249 · 106, (3ν2/g)1/3 = 0.251 mm, and λ∗ = 15.225, 8.790, and 3.400 mm for Re = 1, 3, and 20,
respectively].

2.3. Wavy Regimes of the Film Flow Down a Corrugated Surface. The form of perturbations
in (2.5) implies that there are two different periods in the x direction in the general case. The first period corresponds
to the corrugation period of the wall L, and the second period is L/Q. For low values ofQ, we have “long-modulated”
perturbations. Perturbations with Real γ = 0 are neutral. At these values of parameters, the wavy regime branches
off from the original solution. The new solution is presented as a double Fourier series

H(ξ, x) =
N/2−1∑

n=−N/2+1

M/2−1∑
m=−M/2+1

Hnm exp (2πinξ) exp (2πimx),

q(ξ, x) =
N/2−1∑

n=−N/2+1

M/2−1∑
m=−M/2+1

qnm exp (2πinξ) exp (2πimx), (2.9)

(H−n,−m)∗ = Hnm, (q−n,−m)∗ = qnm, ξ = x− ct.

The phase velocity c here is the eigenvalue of the nonlinear problem. The branching wavy regimes are described by
the following equations:

−Qc ∂q
∂ξ

+
6
5
∂

∂x

q2

H
+

6
5
Q

∂

∂ξ

q2

H
=

3
εRe

(
H − q

H2

)
+ ε2WeH

(∂3H

∂x3
+ 3Q

∂3H

∂x2 ∂ξ

+ 3Q2 ∂3H

∂x∂ξ2
+Q3 ∂

3H

∂ξ3
+

1
ε1

d3f

dx3

)
, (2.10)

−Qc ∂H
∂ξ

+
∂q

∂x
+Q

∂q

∂ξ
= 0.

The phase of one harmonic in Eqs. (2.9) can be assumed to be known (e.g., H10 = 0). As Eqs. (2.10) are symmetric
with respect to the transformation ξ → ξ + const, the origin may be chosen arbitrarily. This circumstance allows
us to determined the unknown phase velocity c in addition to other harmonics. The second equation in (2.10) and
the normalization condition yield

qnm =

⎧
⎨
⎩

nQcHnm/(nQ+m), n �= 0,
0, n = 0, m �= 0,
1, n = 0, m = 0.

Thus, the problem reduces to finding the unknown harmonics Hnm and phase velocity c and is solved numerically
by the Newton method. Note that biperiodic wavy solutions for a flow down a smooth wall were obtained in [6].
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Fig. 1. Liquid nitrogen (a) and water–glycerin (b) film flow down a corrugated surface with a corrugation period
L = 1.57 mm for Re = 5 (1) and 20 (2): the solid and dashed curves refer to the calculations by the Navier–Stokes
equations and by the integral model, respectively.
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Fig. 2. Liquid nitrogen (a and b) and water–glycerin (c and d) wavy film flow down a smooth surface: (a) Re = 10
and λ = 2.85 mm; (b) Re = 6 and λ = 10 mm; (c) Re = 4.2 and λ = 10.8 mm; (d) Re = 4.2 and λ = 38.5 mm;
the solid and dashed curves refer to the calculations by the Navier–Stokes equations and by the integral model,
respectively.
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3. CALCULATION RESULTS

3.1. Waveless Solutions for a Film Flow Down a Corrugated Surface. Comparison of the
Integral Approach with the Solutions of the Navier–Stokes Equations. The results calculated by the
Navier–Stokes equations and by the integral model for two liquids are plotted in Fig. 1. For a fixed corrugation
period, we calculated the velocity fields (2.1) and the shape of the free surface h(x) for different values of the
corrugation amplitude. The corrugation shape function in all calculations was defined as f(x) = 0.5(1− cos (2πx)).
Note that the corrugation parameters considered here are close to the corresponding characteristics of the fine
texture for elements of the commercial setup Sulzer 500Y [16]. The basic characteristics of the free surface (the
mean film thickness 〈H〉 and the maximum and minimum local film thicknesses Hmax and Hmin) were calculated for
a low-viscosity liquid (nitrogen at the saturation line at atmospheric pressure) and for a water–glycerin solution [3]
for Re = 5 and 20. The solutions of the Navier–Stokes equations for steady traveling waves and the corresponding
solutions of the integral model (2.3) are plotted in Fig. 2 for the film flow down a smooth surface (A = 0). The
shape of the free surface was calculated for two liquids and for two types of waves [3, 5].

A comparison of the solutions of the Navier–Stokes equations and the corresponding solutions (2.3) for two
limiting cases allow us to conclude that the integral approach is suitable for analyzing wave formation in a flow
down a corrugated surface.

3.2. Linear Stability of the Film Flow Down a Corrugated Surface to Perturbations of the Free
Surface. The results on linear stability are plotted in Figs. 3–6. For comparatively moderate Reynolds numbers,
there exist corrugation parameters that ensure a stable film flow to arbitrary pertubations of the free surface (the
values of Q ∈ [0, 1] in (2.5) were varied). For instance, the range of these parameters for a liquid nitrogen film flow
in Fig. 3a for Re = 1 is located between curves 1 and 1′. Similar ranges for the water–glycerin film flow are shown
in Fig. 3b. Note that there are unstable perturbations of the free surface for all Reynolds numbers in the flow down
a smooth wall.

In a certain sense, wall corrugation exerts a stabilizing effect on evolution of perturbations on the free
surface. Figure 4 shows the curves where the flow loses its stability to free-surface perturbations with a period
equal to the corrugation period [Q = 0 in (2.5)]. On these curves, the real part of one pair of complex-conjugate
eigenvalues vanishes. Note that waveless solutions, which are unstable to perturbations with Q = 0, cannot be
observed in experiments. The corrugation parameters for such solutions in the case of a liquid nitrogen film flow in
Fig. 4a are located above curves 1–5. The corrugation period here is normalized to the wave length of the neutral
perturbation (2.8) in the film flow down a smooth wall. Similar results for a water–glycerin film flow are plotted
in Fig. 4b. Figure 5 shows the ranges of corrugation parameters where the corresponding waveless solutions are
stable to perturbations with a period equal to the corrugation period (below curve 1) and the range where the
waveless solutions are stable to arbitrary perturbations of the free surface (region bounded by curves 2 and 2′). The
calculation results plotted in Fig. 5 refer to the liquid nitrogen film flow with Re = 5. In regions between curves 1
and 2 and below curve 2′, unstable perturbations are those with finite values of the parameter Q in (2.5). Figure 6
shows such values of Q (in the regions located below the corresponding curves) for three values of the corrugation
amplitude.

The analysis performed allows us to draw the following conclusions. There exist corrugation parameters at
which the waveless solution (analog of the Nusselt solution for a film flow down a smooth wall) may be unstable
to perturbations with the same period and is not observed in any region of the flow) (in contrast to the Nusselt
solution observed in the initial region of the flow). At the same time, there exist corrugation parameters at which
the waveless solution is stable to arbitrary perturbations of the free surface for moderate Reynolds numbers (in
this case, corrugation of the wall exerts a stabilizing effect). For other values of the corrugation parameters and
Reynolds numbers, the waveless solution is unstable to perturbations with finite values of Q and may be observed
only in the initial region of the flow (similar to the Nusselt solution in the case of a film flow down a smooth wall).

3.3. Calculation of Wavy Regimes of the Film Flow Down a Corrugated Surface. To describe
nonlinear wavy regimes of the film flow down a smooth wall within the framework of Eqs. (2.3), it suffices to use
only one external parameter Re /Fi1/11. For each value of this parameter, there are many different one-parameter
families of steady traveling solutions [5]. The internal parameter for each family in the wave length λ (or the wave
number α = 2π/λ). Each family of solutions exists in a certain range of wave lengths (normally, 0 < α < α∗) and is
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Fig. 3. Corrugation parameters that ensure a stable film flow down a corrugated wall with respect to all linear
perturbations of the free surface (regions between the corresponding curves): (a) liquid nitrogen for Re = 1
(1 and 1′), 5 (2 and 2′), and 8 (3 and 3′); (b) water–glycerin solution for Re = 0.5 (1 and 1′), 1 (2 and 2′), and 3
(3 and 3′).
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Fig. 4. Corrugation parameters that ensure a stable film flow down a corrugated wall with respect to perturbations
with a period equal to the corrugation period (regions below and between the corresponding curves): (a) liquid
nitrogen for Re = 1 and λ∗ = 6.65 mm (1), Re = 6 and λ∗ = 2.71 mm (2), Re = 8 and λ∗ = 2.35 mm (3),
Re = 10 and λ∗ = 2.1 mm (4), and Re = 20 and λ∗ = 1.49 mm (5); (b) water–glycerin solution for Re = 3 and
λ∗ = 8.79 mm (1), Re = 5 and λ∗ = 6.81 mm (2), and Re = 20 and λ∗ = 3.4 mm (3).

combined with other families in a complicated manner. The condition of stability to perturbations with the same
period significantly decreases the number of possible families of solutions, because most of them to not contain
regimes stable to this class of perturbations. Two families of solutions are specific in terms of stability. The first
family (see Fig. 2a and c) branches off from the trivial solution H(x) = 1. The second family of solutions branches
off from the first one (see Fig. 2b and d).

An analysis of wavy regimes of the film flow down a corrugated surface reveals new external parameters:
corrugation period L and amplitude A. The period L/Q in (2.9) is an internal parameter, similar to the wave
length λ in the case of the wavy film flow down a smooth wall. Thus, with allowance for the number of external
parameters, the case considered is substantially more complicated (e.g., the wavy flow down a smooth wall with
all possible solutions is only a simple limiting case of this problem). The calculated results, nevertheless, give a
“simpler” wave pattern for a film flow down a corrugated surface. In the present work, we consider only the wavy
flow of a liquid nitrogen film. No different families of wavy solutions were found for high corrugation amplitudes.
The calculations were started from low corrugation amplitudes [the initial approximation for solving Eq. (2.10) was
the corresponding wavy solutions for a film flow down a smooth wall]. Figure 7 shows the typical instantaneous
profiles of the corrugated free surface with different corrugation amplitudes (note that the corrugation period in the
x direction is equal to Q in the chosen coordinates). The calculations started from solutions for “long” waves of the
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Fig. 6. Liquid nitrogen film flow down a corrugated wall for Re = 1 and A = 0.1 (1 and 1′), 0.2 (2 and 2′),
and 0.4 mm (3 and 3′); the regions below the curves are regions of unstable perturbations.
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Fig. 7. Wavy flow of the liquid nitrogen film down a corrugated wall for Re = 6, L = 1.2 mm,
Q = 0.1035, and A = 0 (1), 0.1 (2), 0.2 (3), and 0.135 mm (4).

second family. Similar calculations were performed for different values of Re, L, and Q and started from different
wavy solutions for low corrugation amplitudes (including the solutions for “short” waves of the first family). In
some cases, solutions for high corrugation amplitudes (A ≈ 0.2 mm) could be obtained; in other cases, the solution
degenerated into a waveless solution; and sometimes merging with other wavy solutions was observed (e.g., those
started from low corrugation amplitudes from solutions for waves from other families). Other parameters, apart
from the corrugation amplitude, were also varied. In this case, merging of different solutions and degeneration
into waveless solutions could also occur. Thus, one set of parameters (Re, A, L, and Q) could be obtained by
different methods, avoiding bifurcation points. No different families of solutions were observed for high corrugation
amplitudes. In this sense, the wave pattern becomes simpler. The wavy solutions for different values of Q (“long”
and “short” waves) are plotted in Figs. 8 and 9 for fixed values of the corrugation amplitude, corrugation period,
and Reynolds number.
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Fig. 8. Wavy flow of a liquid nitrogen film down a corrugated wall for Re = 10, A = 0.175 mm, and
L = 1.2 mm: profile of the corrugated wall (1), waveless solution (2), “long” waves with Q = 0.12 for t = 0
(3) and t = T/2 (3′), and “short” waves with Q = 0 for t = 0 (4) and t = T/2 (4′).

Fig. 9. Wavy flow of a liquid nitrogen film down a corrugated wall for Re = 10, A = 0.175 mm, and
L = 3 mm: profile of the corrugated wall (1), waveless solution (2), “short” waves with Q = 1 for t = 0 (3)
and t = T/2 (3′), and “long” waves with Q = 0.5 for t = 0 (4) and t = T/2 (4′).

The analysis performed allows us to conclude that wall corrugation exerts a significant effect on the global
pattern of nonlinear waves on the free surface. For high corrugation amplitudes, nonuniqueness of the families of
wavy solutions disappears.
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REFERENCES
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